Unit-V

Chapter 20. Breathing and Exchange of Gases

IMPORTANT POINTS

•	Removal of CO ₂ and intaking O ₂ is essential for cells during various processes in the body of
	organisms to take O_2 is inspiration and removeing co_2 is expiration processes. Both together called
	as breathing.

- In human for breathing activity nose, phalynx, larynx, trachea, bronchi and lungs like organs makes togather respiratory system.
- Diagphram and intercostal muscel play important role in inspiration and expiration process.
- In exchange and transport of resiratory gases O₂ and CO₂ both are transported, in this blood play
 important role.
- The process of respiration is regulating by nervous system and chemical
- Disorders of Respiratory system are Asthma, Emphysema, Occupational Respiratiory Disorders.

(1)	Respiration is hel	pful in		
	(a) Removing wa	aste from the body	(b) Producing energy	within the body
	(c) Production of	proteins	(d) Production of carb	ohydrates.
(2)	Respiration,occu	res in the presence of oxy	gen in called	
	(a) Fermentation		(b)Anaerobic respirati	on
	(c) Glycolysis		(d)Aerobic respiration	
(3)	The surface, from	n which the exchange of,	gas takes place, is called	d
	(a) Plasma surfac	ee	(b)Respiratory substra	tes
	(c) Respiration su	ırface	(d)Gaseous surface.	
(4)	During respiration	n		
	(a) O ₂ is produce	ed and CO ₂ is consumed	(b) O ₂ is consumed an	nd CO ₂ is produced
	(c) Both O_2 and	CO ₂ are produced	(d) Both O ₂ and CO ₂	are consumed.
(5)	A respiratory sur	face must be ?		
	(a) Thin	(b) Moist	(c) Wide spread	(d) All these.
(6)	Which of the follo	owing shows pulmonary re	espiration	
	(a) Sponge	(b) Fishes	(c) Coelentrate	(d) Human
(7)	What is called the	e Upper region of Pharyn	x in man?	
	(a) Oropharynx	(b) Nasopharynx	(c) Laryngopharynx	(d) None of these
(8)	The diameter of h	numan trachea is about		
	(a) 1 cm	(b) 2.5 cm	(c) 2 inches	(d) 0.1 cm

(9)	The length of hun	nan trachea is abo	out				(Gujarat C.E.T.Q.B.)
	(a) 6 inches	(b) 12 cm	(c)	12 inch	ies	(d) 18 cm	
(10)	The trachea is sup	ported by, cartil	aginous	rings,	which are	shaped	
	(a) C	(b) L	(c)	O		(d) S	
(11)	Sound production	n in humans is co	ntrolled	by			
	(a) Nares	(b) Lungs	(c) l	Larynx		(d) Pharyn	X
(12)	A lung contains n	nany small balloo	n like a	ir sacs.	are called		
	(a) Gas spaces	(b) Alveo	li	(c) I	Bronchi	(d) Bronch	ioles
(13)	The intake of air	is called?					
	(a) Venitlation	(b) Inhala	tion	(c) E	Exhalation	(d) Respira	ation.
(14)	Intercostal muscle	es regulate the mo	ovemen	t of			
	(a) Ribs	(b) Trachea	(c)]	Diapha	ragm	(d) Pharyn	х.
(15)	The muscles pres	ent between ribs	are call	led			
	(a) Phrenic muscl	es (b)	Interco	oslal m	uscles		
	(c) Cardiac musc	les (d)	Volunt	ary mu	scles.		
(16)	During exhalation	n, the diaphragm i	noves				
	(a) Apart	(b) Downward	s (c)	Upwar	ds	(d) Inward	S
(17)	Respiratory contr	rol centres are loa	cted in				
	(a) Lungs	(b) Medulla ob	ongata	(c) S	Spinal cord	(d) Ribs	
(18)	The de-oxygenate	ed blood from he	art con	nes to t	he lungs by		
	(a) Pulmonary art	ery (b) Pulm	onary v	ein	(c) Branch	ial artery	(d) Renal artery
(19)	Oxygen containin	ng blood transpor	ted from	n lungs	s is to heart by	/	
	(a) Pulmonary art	ery (b) Pulm	onary v	ein	(c) Branch	ial artery	(d) Renal vein
(20)	How much fraction	on of oxygen is tr	ansport	ed to ti	ssues throug	h RBCs?	
	(a) 100%	(b) 56%	(c)	45%	(d) 9	7%.	
(21)	H ₂ CO ₃ is convert	ted into CO ₂ and	H_2O w	ith the	help of an en	zyme knowr	ı as
	(a) Carboxylase (b) Carbonic dehydrogenase						
	(c) Carbonicenhy	rdrase	(d)	Carboi	nic anhydrase	.	
(22)	The metal ion pre	sent in haemoglo	bin is				
	(a) Iron	(b) Magr	esium		(c) Copper	:	(d) Zinc
(23)	One RBC can tra	nsport about hov	v many	molecl	es of oxygen	?	
	(a) One million	(b) Ten n	illion		(c)One billi	ion	(d) Ten billion
(24)	How many perce	ntage of CO ₂ trai	nsport i	n the fo	orm of carbar	nino compot	ands?
	(a) 70%	(b) 90%			(c) 5%		(d) 20%
(25)	The largest amou	ent of CO ₂ is trans	sported	in bloo	od as		
	(a) Carbamino co	mpounds		(b) I	Bicarbonates		
	(c) Carbonic acid			-(d)	Carbonate ic	ons.	

Quest	ion	ban	k l	В	lio	log	y

(26)	Chloride back-sl	nift is associated with the	e transport of				
	(a) Carbamino	(b) CO ₂	(c) Oxygen	(d) Water			
(27)	CO ₂ reacts with	water to form					
	(a) Haemoglobin	ic acid	(b) Carbonic acid	l			
	(c) Bicarbonate i	ons	(d) Carbon mono	oxide.			
(28)	Bronchitis is a						
	(a) Bacterial infe	ction	(b) Viral infection				
	(c) Protozoan inf	ection	(d) Fungal infection	on.			
(29)	Asthma is a dise	ase of					
	(a) Pharynx	(b)	Trachea and its bran	ches			
	(c) Lungs	(d)) Blood capillaries				
(30)	Flattening of alve	eolar ducts (tracheal ves	sels) results in				
	(a) Asthma	(b) Emphysema	(c) Lung cancer	(d) Bronchitis.			
(31)	Which of these p	rotects the larynx					
	(a) Pharnx	(b) Trachea	(c) Epiglottis	(d) Naso-pharynx.			
(32)	Trachea terminat	es in					
	(a) Bronchi	(b) Alveoli	(c) Bronchioles	(d) Nares			
(33)	In which form C	O_2 is not transported by	blood plasma				
	(a) NaHCO ₃	(b) KHCO ₃	(c) Carbamino pro	oteins (d) KHbO ₂			
(34)	Which one is not	viral infection		-			
	(a) Vocational lu	ng disease (b)) Bronchitis				
	(c) Asthma	(d)) Emphysema.				
(35)	In which case specific gases, chemicals or suspended particulate matter in air are not						
	responsible for this disease						
	(a) Silicosis	(b) Asbestosis	(c) Fibrosis	(d) Pneumonia			
(36)	They respire thro	ugh lungs					
	(a) Fish	(b) Cockroaches	(c) Crocodiles	(d) Earthworms			
(37)	The muscles take	e part in rapid breathing					
	(a) Muscles of rib cage						
	(b) Muscles of neck region and abdominal region						
	(c) Thoracic and	abdominal muscles					
	(d) Muscles of ne	eck region and thoracic	region.				
(38)	Human lungs are	situated in					
	(a) Abdominal ca	wity (b) Thoracic ca	vity (c) Inside d	iaphragm (d) Abdominal cavity			
(39)	Blockage in resp	iratory passage in huma	ans is prevented due to	o the presence of			
	(a) Epiglottis	(b)) Larynx				
	(c) Alveoli	(d)) 'C' shaped cartilage	nous rings.			

(40)	In human beings				
	(a) Left lung is slightly smaller	(b) Left lung is slightly v	(b) Left lung is slightly wider		
	(c) Right lung is slightly smaller	(d) Both lungs are of sir	nilar size.		
(41)	The left lung is slightly smaller so as				
	(a) It is exception	(b) No specific reason			
	(c) Both A and B	(d) To accommodate he	eart.		
(42)	In which disease lung tissue degenerate?				
	(a) Bronchitis (b) Pneumonia	(c) Asthma (d) E	Emphysema.		
(43)	Which is the lung disorder related to profes	ssion?			
	(a) Silicosis (b) Emphysema	(c) Pneumonia	(d) Asthma		
(44)	This disease is due to first virus infection fo	llowed by bacterial attac	k		
	(a) Asthma (b) Bronchitis	(c) Emphysema	(d) Allergy		
(45)	The disease in which masses of undifferent	iated cells formed in track	neal walls		
	(a) Acute bronchitis (b) Emphysema	(c) Lung cancer	(d) Pneumonia		
(46)	This disease is due lo allergens				
	(a) Emphysema (b) Bronchitis	(c) Pneumonia	(d) Asthma		
(47)	During inhalation the following activities occ	cur			
	(a) Area of rib cage increases, diaphragm is	s pulled upwards			
	(b) Area of rib cage increases, diaphragm is	s pulled downward			
	(c) Area of rib cage reduces, diaphram gets	s contracted			
	(d) Area of rib cage reduces, diaphram get	s relaxed.			
(48)	Blood transports oxygen in the form of				
	(a) HHbO ₂ (b) KHCO ₃	(c) KHbO ₂	(d) H_2CO_3		
(49)	In which three forms of CO ₂ is transported	l by blood			
	(a) As a solution, carbamino compunds, bid	carbonates			
	(b) As a solution, carbamino proteins,KHC	CO_3			
	(c) As a solution, carbamino haemoglobin,	NaHCO ₃			
	(d) As A solution, carbamino compound H	I_2CO_3			
(50)	Carbamino proteins are formed in				
	(a) Blood plasma (b) Blood platelets	(c) Blood cells	(d) RBC		
(51)	The centre which excites both the activities	during rapid breathing is			
	(a) Ventral respiratory center	(b) Lateral respiratory of	center		
	(c) Pneumotoxic center	(d) Dorsal respiratory c	enter.		
(52)	The function of pneumotoxic center is				
	(a) To regulate inhalation	(b) To maintain rhythmi	-		
	(c) Increases rate of ethalation	(d) Does not play signif	ficant role.		

Questionbank Biology

(53)	During normal bre	athing the ventral r	espirat	tory center			
	(a) Maintian rhythi	nicity of respiration	1	(b) Does not pla	y signifi	cant role	
	(d) Excites both in	halation and exhala	ntion	(d) Regulate bre	athing		
(54)	AIDS patients are	susceptible to this	respira	atoty disease			
	(a)Pneumonia	(b)Fibrosis		(c)Emphysema		(d)Asthma	
(55)	The full from of H	b is					
	(a) Hydrogen bror	nide (b) Henson	bond	(c) Hydrogen bo	ond	(d) Haemoglobin	
(56)	H.Hb is						
	(a) H ₂ b			(b) Heavy hydro	gen bo	nd	
	(c) Reduced brom	ide		(d) Haemoglobi	n acid		
(57)	The enzyme carbo	nic anhydrase is of	f which	ntype?			
	(a) Lyases	(b) reversible		(c) Unidirection	al (d) Is	somerase.	
(58)	What is role of but	ffer system in bloo	d?				
	(a) To maintain pH	I of blood plasma		(b) To maintain	pH of b	lood	
	(c) To maintain pH	I of RBC		(d) To maintain	pH of b	lood platelets	
(59)	CO ₂ combines in h	numan RBC with the	he whi	ch ion of haemog	lobin		
	(a) -NH ₂	(b) -OH ⁻	(c) -H	\mathbf{H}^{+} (d)	- COC	OΗ	
(60)	On respitatory sur	face,KHCO ₃ form	ed in R	BC reacts with			
	(a) H.HbO ₂	(b) CI ⁻		(c) H.Hb	(d) H	Ib	
(61)	Where Bicarbona	te is conveted into	carbo	nic acid			
	(a) In the RBC of o	capillaries around t	he lun	gs			
	(b) In the body flux	id					
	(c) In the areolar c	avity of lungs					
	(d) In the RBC of	blood capillaries a	round	body tissue.			
(62)	Maximum amount	c of O_2 is transported	ed in h	umans by			
	(a) RBC	(b) WBC	(c) B	lood platelets	(d) B	lood plasma	
(63)	After entering RB	C,Cl reacts with					
	(a) K ⁺	(b) KHCO	3	(c) H.Hb	(d) F	$CHbO_2$	
(64)	CO ₂ from RBC en	ters blood plasma	in the	form of			
	(a) H ₂ CO ₃	(b) HCO ₃	(c) K	CHCO ₃	(d) N	NaHCO₃	
(65)	The human ribs						
	(a) Are accessory	respiratory organs		(b) Do not help	in breatl	ning	
	(c) Are main respin	atory organs		(d) Are not resp	iratory o	organs	
(66)	Respiration rate is	the lowest during.					
	(a) Running	(b) Playing	(c) Ea	ating	(d) S	leeping	
(67)	Hamburger's pher	nomenon is also kn	own a	s(CPMT.1988,19	91,AMU	J.2001,J.LPME.R.200	02)
	(a) HCO ₃ shift	(b) Na ⁺ shif	Ì	(c) H ⁺ shift	(d) C	hloride shift	

Questionbank Biology (68) Oxygen carrying capacity of blood is (CPMT.1990) (a) 20% (b) 30% (c) 40%(d) 50% (69) Respiratory movements are controlled by (A.P.M.E.E.1978, C.P.M.T.1998) (c) Medulla oblongata (a) Cerebelluam (b) Cerebrum (d) Crura cerebri (CPMT.1990) (70) At higher CO₂ conditeentration, oxygen dissociation curve of haemoglobin will (a) Move to left (b) Move to right (c) Become irregular (d) Move upwardly (71) Chloride shift is required for transport of (CPMT.1990) (a) Nitrogen (b) Oxygen (c) Carbon dioxide (d) Carbon dixide and oxygen (72) Volume of air inspired or expired with each normal breath is known as(CMPT.1992,AMU.2000) (a) Inspiratory capacity (b) Total Lung capacity (c) Tidal volume (d) Residual volume (73) Oxygen haemoglobin dissociation curve will shift to right on decrease of (AMU.1992) (b) Carbon dioxide concentration (a) Acidity (c) Temperature (d) pH (74) Is Double membrane pleard sac is situated..... (J.K.C.M.E.E.1992) (a) Envelops the kidneys (b) Envelops the brain (c) Envelops the lungs (d) Lines the nasal passage (75) Volume of air remaining in lungs after: maximum respiratory effort is (J.K.C.M.E.E.1992, Har.PMT.2003) (a) Vital capacity (b) Residual volume (c) Total lung capacity (d) Tidal volume (76) In expiration, diaphragm becomes (C.P.M.T.1993)(a) Flattened (b) Relaxed (c) Straightened (d) Arched (77) Carbon dioxide is transported from tissues to respiratory surface by only(C.B.S.E.1993) (a) Plasma and erythrocytcs (b) Plasma (c) Erythrocytes (d) Erythrocytes and leucocytes. (78) Respiratory centre is situated in CPMT.1980,2002,B.H.U.1995,M.P.P.M.T.1998,C.B.S.E.1999,R.PMT.2006) (a) Cerebellum (b) Medulla oblongata (d) Cerebrum (c) Hypothalamus (79) Air is breathed through (C.B.S.E.1994.A.P.M.E.E.1999, Karanataka 2002) (a) Trachea \rightarrow lung \rightarrow larynx \rightarrow pharynx \rightarrow alveoli (b) Nose \rightarrow larynx \rightarrow pharynx \rightarrow alveoli \rightarrow bronchioles (c) Nostrils \rightarrow pharynx \rightarrow larynx \rightarrow trachea \rightarrow bronchi \rightarrow bronchioles \rightarrow alveoli (d) Nose \rightarrow mouth \rightarrow lungs.

(80) Which is false? (Manipal 1995) (a) Blood from right side of heart is carried to lungs by pulmonary artery (b) Pleura is double covering of kindey (c) Pancreas is both exocrine & endocrine gland (d) Scurvy is due to vitamin C deficiency. (81) Volume of air breathed in and out during effortless respiration is (Kerala 2001) (a) residual volume (b) vital volume (c)tidal volume (d) normal volume (82) Body tissue obtain oxygen from haemoglobin due to its dissociation in tissues caused by (M.P.PMT.1995)(a) Low oxygen concentration and high carbon dioxide concentration (b) Low oxygen concentration (c) Low carbon dioxide concentration (d) High carbon dioxide concentration. (83) Lungs have a number of alveoli for (M.P.PMT.1995)(a) Having spongy texture and proper shape (b) More surface area for diffusion of gases (c) More space for increasing volume of inspired air (d) More nerve supply. (84) Presence of large number of alveoli around alveolar ducts opening into bronchioles in mammalian lungs is (C.B.S.E.1995) (a) Inefficient system of ventilation with little of residual air (b) Inefficient system of ventilation with high percentage of residual air (c) An efficient system of ventilation with no residual air (d) An efficient system of ventilation with little residual air. (85) During transport of CO₂ blood does not become acidic due to (C.B.S.E.1995) (a) Neutralisation of H₂CO₃ by Na₂CO₃ (b) Absorption by leucocytes (c) Blood buffers (d) Non accumulation (86) At high altitude, RBCs of human blood will (C.B.S.E.1995, Pb.PMT.1999, J.LPM.E.R.2000) (b) Decrease in number (a) Increase in number (c) Decrease in size (d) Increase in size (87) CO₂ is transported (C.B.S.E.1095) (a) dissolved in blood plasma (b) As carbonic acid (c) In carbaminohaemoglobin (d) As carbaminolaemoglobin and carbonic acid

(88) Maximum amount 70-75% of carbon dioxide transport occurs as

(R.P.M.T.1996,1998,Kamataka 1997,M.P.PMT.1998,C.P.M.T.1998,B.V.2002)

(a) Dissolved in plasma

(b) Carbaminohaemoglobin complex

(d) None of the above (c) Bicarbonate

			Que	stionbank B	iology		
(89)	Trachea is lined	with incom	plete rings of	•			(D.P.M.T.1996)
•	(a) Fibrous carti	_	-		lcified cartil	age	
	(c) Elastic cartila	ige		(d) Hy	aline cartila	ge	
(90)	Oxygen and carl	on dioxide	e are transpo	rted in bloc	d through		(CB.S.E.1996)
	(a) Platelets and	corpuscles	3	(b) RE	Cs and Wl	BCs	
	(c) WBCs and s	erum		(d) RE	3Cs and	plasma	
(91)	About 1500 ml o	of air left in	lungs is calle	ed			(CB.S.E.1996)
	(a) Tidal volume			(b) Ins	piratory res	erve volume	
	(c) Residual volu	ime		(d) Vit	al capacity		
(92)	Which one prote	ects the lung	gs?				(B.H.U.1990)
	(a) Ribs (b)	Vertebral co	olumn	(c) Ste	rnum	(d) All the	above
(93)	Which one has the	he lowest v	alue?				
	(a) Tidal volume			(b)Vita	al capacity		
	(c) Inspiratory re	eserve volu	me	(d) Ex	piratory res	erve volume	
(94)	A child was kille water	d through a	asphyxiation	. Post mort	urm confirn		e a piece of lung put in PMT.1996)
	(a) Settled down	n		(b) Ke	pt floating		
	(c) Had blood sp	oots		(d) No	one of the al	oove	
(95)	Amount of oxyg	en present	in one gram	of haemogl	obin is		
					(1	A.I.I.M.S.19	97,Har.PMT,2000)
	(a) 20 ml		(t) 1-34 ml			
	(c) 13-4 ml		(0) None of t	the above		
(96)	A molecule of haemoglobin carries how many oxygen molecules						
		(()	M.P.P.M.T.1	997,Tamil	Nadu 2001	,C.F.M.T.20	02,J.CM.E.E.2004)
	(a) 1	(b)2	(0	2) 3	(d) 4		
(97)	In carbon mono	•	C				(A.F.M.C 1997)
	(a) Increase in carbon dioxide concentration						
	(b) Decrease in oxygen availability						
	(c) Decrease in free haemoglobin						
	(d) None of the	above.					
(98)	Exchange of gas	es in lung a	lveoli occurs	through		(CB.S.E.19	98,A.FMC.2002)
	(a) Active transp	ort (b)Osmosis				
	(c)Simple diffusion	on (d) Passive tra	nsport			
(99)	Haemoglobin is						(CB.S.E.1999)
	(a) Vitamin	(b) Skin	pigment				
	(c) Blood carrier	r (d)Respi	iratoy pigme	nt			
(100)	Vocal cords occ	ur in					
	(a)Pharynx	(b) Lary	nx (c)Glottis	(d) B	ronchial tube	

Questionbank Biology				
(101) The cells which do not respire	(A.FMC.2001)			
(a) Epidermal cells (b) Sieve cells				
(c)Cortical cells (d)Erythocytes				
(102) Hiccough (hiccup) is due to activity of	(Manipal 2001)			
(a)Intercostal muscles	(b) Food in air tract			
(c)Diaphragm	(d) Inadequate oxygen in environment			
(103) Bicarbonate formed inside erythrocytes n				
pass into erythrocytes. The phenomenon i				
(a) Bicarbonate shift	(b)Carbonation			
(c) Hamburger phenomenon	(d) None of the above			
(104) Respiratory centre of brain is stimulated b	(A.I.I.M.S 2000)			
(a) Carbon dioxide content in venous bloc	od (b)Carbon dioxide content in arterial blood			
(c)Oxygen content in venous blood	(d) Oxygen content in arterial blood			
(105) A higher CO_2 concentration of blood cau	ses (AM U.2001)			
(a) Slow diffusion of co ₂ from blood	(b) Slow transport of CO ₂ from blood			
(c) Slow diffusion of o ₂ from blood	(d) Both A and B			
(106) Gases diffuse over the respiratory surface	e because of (Manipal 2002)			
(a) O ₂ is more in alveoli than in blood	(b)O ₂ is more in blood than in tissues			
(c) CO ₂ is more in alveoli than in blood	(d) PCO ₂ is more in blood than in tissues			
(107) Dissociation curve of O ₂ (which is dissoci	ation from Hb) shifts to the rights			
(a) O ₂ concentration decrease	(b) CO ₂ concentration decreases			
(c) CO ₂ concentration increase	(d) Chloride concentration increases			
(108) Thoracic cage of man is formed of	(M.P.P.M.T.2002)			
(a)Ribs and sternum	(b)Ribs, sternum and thoracic vertebrae			
(c)Ribs,sternum and lumbar vertebrae	(d)Ribs and thoracic vertebrae.			
(109) Vital capacity of lung is equal to	(Karnataka 2002)			
(a)IRV+ERV+TV	(b) IRV+ERV+TV-RV			
(c)IRV+ERV+TV+RV	(d)IRV+ERV			
(110) Dead space is	(Manipal 2003)			
(a) Upper respiratory tract	(b) Nasal chambers			
(c) Alveolar space	(d) Lower respiratory tract.			
(111) Carbon monoxide contained in Tobacco	smoke (A.I.E.E.2003)			
(a) Is carcinogenic	(b) Causes gastric ulcers			
(c) Reduces oxygen carrying capacity of	blood (d) Raises blood pressure			
(112) What is correct ?	(Orissa 2003)			
(a) Pulomonary ventilation is equal to alve	eolar ventilation			
(b) Alveolar ventilation is less than pulmor				
(c) Alveolar ventilation is more than pulmo	•			
(d) Both are variable.				
	239			

			Questio	onbank Bio	logy		
(113)	Increase in CO	concentration shal	l cause				(CB.S.E.2004)
,		shallower breathing					,
		l deeper breathing					
		deeper breathing					
	(d) No effect o	-					
(114)		e enlarged and dama	iged wi	th reduced	d surface a	area in	heavy smokers. the
,	condition is cal						erala 2004)
	(a) Silicosis	(b) Emphysema					,
	(c) Asthma	(d) Bronchitis					
(115)	` '	ed by a variant of					(A.I.I.M.S 2004)
` ′		ccus pneumonia					`
	(b) Common cold by Corona virus						
	(c) Asthma	•					
	(d) Bronchitis						
(116)	During inspirati	ion	(J.]	I.PME.R.	2004,Oris	ssa 20	05,R.PMT.2005)
	(a) Diaphragm and external muscles relax						
	(b) Diaphragm and internal intercostal muscles relax						
	(c) Diaphragm and external intercostal muscles contract						
	(d) Diaphragm	and internal intercos	stal mus	cles contra	act.		
(117)	Mountain sick	ness at high altitude i	s due to)			(C.P.M.T.2005)
	(a) Excess co ₂	in blood		(b) Deci	reased CO	O_2 in a	ir
	(c) Decreased	partial pressure of o	xygen	(d) Decr	eased effi	iciency	of haemoglobin
(118)	Capacity of hu	man lungs for air in a	health	y person is	8		(Orissa 2005)
	(a) 3000 ml	(b) 1500 ml	(c) 1	000 ml	(d) 5	00 ml	
(119)	Rate of breathi	ng is controlled by					
	(a) Amount of	freely avilable oxyge	n	(b) Carb	on dioxic	le in bl	ood
	(c) Muscular fu	unctions of body		(d) All th	he above		
(120)	During strenou	is exercise,glucose is	conver	ted into			(B.H.U.2005)
	(a) Glycogen	(b) Pyravi	ic acid	(c) Starch		(d) Lactic acid
(121)	How much pul	monary air is expired	l norma	lly			(Har.P.M.T.2005)
	(a) 70%	(b) 20%		(c) 25%	(d) 3	2%	
(122)) Which is incor	rect?					(C.B.S.E.2006)
	(a) Presence of nonrespiratory air sacs increases efficinency of respiration in birds						
	(b) In insects, circulation body fluids serve to distribute oxygen to tissues						
	(c) Principle of	counter - current flo	w facili	tates effici	ient respir	ation i	n gills of fishes
	(d) Residual air	r in lungs slightly dec	reases t	he efficier	ncy of resp	oiratio	n in mammals
(123)	Percenatage of	foxygen being carrie	ed by bl	ood plasm	na is		(Orissa 2006)
	(a) 6-9%	(b) 3-6%	(c) 2	2-3%	(d) 1	-2%	
				240			
			•	\ - . ~ /			

INDIAN SCHOOL MUSCAT

(124) Column I represents diseases and column II represents their symptoms. Which of the following pairs are correct match for them (Guj.CE.T.2006)

ColumnI

(P) Asthma
(i) Recurring of bronchitis
(Q) Emphysema
(ii) Accumulation of W.B.CS in alveolus
(R) Pneumonia
(iii) Allergy

(a) P = iii, Q = ii, R = i(b) P = iii, Q = i, R = ii(c) P = ii, Q = ii, R = ii(d) P = ii, Q = i, R = iii

125:- Make the correct pairs.

Column-II
(a) Tidal volume

Column-II

i. 1000 to 1100 ml

(a) P - ii , Q - iv , R - i , S - iii (b) P - ii , Q - i , R - ii , S - iv

(c) Expiratory reserve iii. 2500 to 3000 ml (c) P - iv , Q - ii , R - iv , S - iii (d) P - iv , Q - i , R - iii , S - ii

volume (d) Inspiratory reserve

volume iv. 1100 to 1200 ml

126:- Make the correct pairs.

Column-II Column-II

(a) IC i. Total volume of air inhaled by breathing.

(a) P - ii , Q - iii , R - iv , S - i
(b) P - iii , Q - ii , R - iv , S - i
(c) P - ii , Q - ii , R - iv , S - i
(d) P - ii , Q - ii , R - iv , S - i
(e) P - ii , Q - iv , R - ii , S - i
(f) P - ii , Q - iv , R - ii , S - i
(g) VC

(c) VC expiration in lungs.
(d) P - iii , Q - iv , R - i , S - ii

 $\label{eq:continuous} \mbox{iii. Volume of air inhaled after expiration.}$ (d) FRC

iv. Volume of air exhaled after inspiration.

127:- Make the correct pairs.

Column-II Column-II

(a) Expiratory capacity i. VC + RV. (a) P - i, Q - ii, R - iii, S - iv

(b) P - ii , Q - iii , R - iv , S - i

(b) Inspiratory ii. TV + ERV. (c) P - ii, Q - iv, R - i, S - iv

(d) P - iii , Q - iv , R - ii , S - i

(c) Vital capacity iii. TV + IRV.

(d) Total lung capacity

iv. TV + IRV + ERV.

128:- Make the correct pairs.

Columan-I (a) Silicosis	Column-II i. Spreading of fibrous tissue.	(a) P - iii, Q - iv, R - ii, S - i (b) P - iv, Q - iii, R - ii, S - i
(b) Emphysem	a ii. Little aloveolar elasticity.	(c) P - ii, Q - iii, R - iv, S - i (d) P - i , Q - ii , R - iii , S - iv
(c) Asthma	iii. Muscle of the wall of tracheal	
(d) Bronchitis	branches agitate(d).	

128:- Make the correct pairs.

Columan-I	Column-II	
	i. Lack of O ₂ in organs.	(a) P - iv, Q - iii, R - i, S - ii
(a) Pneumonia	<u> </u>	(b) P - ii , Q - iii , R - i , S - iv
(b) Bronchitis	ii. Attack of air and particles.	
(c) Emphysema	iii. More coughing.	(c) P - iv , Q - i , R - iii , S - ii (d) P - ii , Q - iv , R - iii , S - i
(d) Asbetosis	iv. Filling of dead WBC.	(d) 1 - 11 , Q - 17 , K - 111 , S - 1

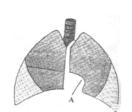
130:- Make the correct pairs.

Column-II Column-II

(a) Dranahua	i Civa massa sa ta ain tayyand alwaali	(a) P - 11, Q - 111, R - 1V, S - 1
(a) Bronchus	i. Give passage to air toward alveoli	(b) P - i, Q - iv, R - ii, S - iii
(b) Alveoli	ii. Give passage to air toward lung	(c) P - ii, Q - iv, R - i, S - iii
(c) Bronchioles	iii. Give passage to air toward bronchus	(d) P - i , Q - iii , R - ii , S - iv
(d) Trachea	iv. Perform exchange of air	$(\mathbf{u}) \mathbf{r} - \mathbf{l}$, $\mathbf{Q} - \mathbf{m}$, $\mathbf{K} - \mathbf{l}$, $\mathbf{S} - \mathbf{W}$

131:- What is indicated by A and B respectivity in the figure?

- (a) Trachea and Pharynx
- (b) Larynx and Pharynx
- (c) Nasal chamber and Trachea
- (d) Bronchus and Pharynx


132:- Where the A and B parys, Labeled in given figure are ended?

- (a) Bronchus and Lungs
- (b) Bronchioles and Lungs
- (c) Trachea and Bronchioles
- (d) Bronchus and Alveoli

133:- What is indicated by "A" in figure?

(a) Alveoli (b) Lungs (c) Heart (d) Trachea

ANSWER KEY

1. b	2. d	3.c	4.b	5.d	
6.d	7.b	8.b	9.b	10.a	
11.c	12.b	13.b	14.a	15.b	
16.c	17.b	18.a	19.b	20.d	
21.d	22.a	23.c	24.d	25.b	
26.c	27.b	28.a	29.b	30.b	
31.c	32.a	33.b	34.a	35.d	
36.c	37.b	38.b	39.d	40.a	
41.d	42.d	43.a	44.b	45.c	
46.d	47.b	48.c	49.b	50.a	
51.a	52.a	53.b	54.a	55.d	
56.d	57.b	58.b	59.a	60.a	
61.a	62.a	63.a	64.b	65.d	
66.d	67.d	68.a	69.c	70.b	
71.c	72.c	73.d	74.c	75.b	
76.b	77.a	78.b	79.c	80.b	
81.c	82.b	83.b	84.d	85.c	
86.a	87.d	88.c	89.d	90.d	
91.c	92.d	93.a	94.b	95.b	
96.d	97.c	98.c	99.d	100.b	
101.d	102.c	103.c	104.d	105.c	
106.a	107.c	108.b	109.a	110.a	
111.c	112.b	113.c	114.b	115.b	
116.c	117c	118.a	119.b	120.d	
121.d	122.b	123.c	124.b	125.a	
126.b	127.b	128.d	129.a	130.c	
131.b	132.c	133.c			

INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT

243